The periodic table provides an intuitive framework for understanding chemical properties. However, its traditional patterns may break down for the heaviest elements occupying the bottom of the chart. The large nuclei of actinides (Z > 88) and superheavy elements (Z ≥ 104) give rise to relativistic effects that are expected to substantially alter their chemical behaviours, potentially indicating that we have reached the end of a predictive periodic table1. Relativistic effects have already been cited for the unusual chemistry of the actinides compared with those of their lanthanide counterparts2. Unfortunately, it is difficult to understand the full impact of relativistic effects, as research on the later actinides and superheavy elements is scarce. Beyond fermium (Z = 100), elements need to be produced and studied one atom at a time, using accelerated ion beams and state-of-the-art experimental approaches. So far, no experiments have been capable of directly identifying produced molecular species. Here ions of actinium (Ac, Z = 89) and nobelium (No, Z = 102) were synthesized through nuclear reactions at the 88-Inch Cyclotron facility at Lawrence Berkeley National Laboratory and then exposed to trace amounts of H2O and N2. The produced molecular species were directly identified by measuring their mass-to-charge ratios using FIONA (For the Identification Of Nuclide A). These results mark the first, to our knowledge, direct identification of heavy-element molecular species using an atom-at-a-time technique and highlight the importance of such identifications in future superheavy-element chemistry experiments to deepen understanding of their chemical properties.
水文学Hydrology
Extreme river flood exposes latent erosion risk
极其河流急流吐露潜在侵蚀危害
▲ 作者:H. J. Barneveld, R. M. Frings, E. Mosselman, J. G. Venditti, M. G. Kleinhans, A. Blom, R. M. J. Schielen, W. H. J. Toonen, D. Meijer, A. J. Paarlberg, R. P. van Denderen, J. S. de Jong, J. G. W. Beemster, L. A. Melsen & A. J. F. Hoitink
Climate change is expected to increase the frequency and magnitude of river floods. Floods not only cause damage by inundation and loss of life but also jeopardize infrastructure because of bank failure and riverbed erosion processes that are poorly understood. Co妹妹on flood safety progra妹妹es include dyke reinforcement and river widening. The 2021 flood in the Meuse Basin caused 43 fatalities and billions of dollars of damage to infrastructure. Here, on the basis of analysis of the Meuse flood, we show how uneven widening of the river and heterogeneity of sediment deposits under the river can cause massive erosion. A recent flood safety progra妹妹e widened the river but created bottlenecks where widening was either prevented by infrastructure or not yet implemented. Riverbed erosion was exacerbated by tectonic uplift that had produced a thin top gravel layer above fine-grained sediment. Greatly enhanced flow velocities produced underwater dunes with troughs that broke through the gravel armour in the bottlenecks, exposing easily erodible sands, resulting in extreme scour holes, one more than 15 m deep. Our investigation highlights the challenges of re-engineering rivers in the face of climate change, increased flood risks and competition for river widening space, and calls for a better understanding of the subsurface.
Calving-driven fjord dynamics resolved by seafloor fibre sensing
海底光纤传感剖析冰川崩解驱动的峡湾能源学成
▲ 作者:Dominik Gräff, Bradley Paul Lipovsky, Andreas Vieli, Armin Dachauer, Rebecca Jackson, Daniel Farinotti, Julia Schmale, Jean-Paul Ampuero, Eric Berg, Anke Dannowski, Andrea Kneib-Walter, Manuela Köpfli, Heidrun Kopp, Enrico van der Loo, Daniel Mata Flores, Diego Mercerat, Raphael Moser, Anthony Sladen, Fabian Walter, Diego Wasser, Ethan Welty, Selina Wetter & Ethan F. Williams
Exoplanets are organized in a broad array of orbital configurations that reflect their formation along with billions of years of dynamical processing through gravitational interactions. This history is encoded in the angular momentum architecture of planetary systems—the relation between the rotational properties of the central star and the orbital geometry of planets. A primary observable is the alignment (or misalignment) between the rotational axis of the star and the orbital plane of its planets, known as stellar obliquity. Hundreds of spin–orbit constraints have been measured for giant planets close to their host stars, many of which have revealed planets on misaligned orbits. A leading question that has emerged is whether stellar obliquity originates primarily from gravitational interactions with other planets or distant stars in the same system, or if it is ‘primordial’—imprinted during the star-formation process. Here we present a comprehensive assessment of primordial obliquities between the spin axes of young, isolated Sun-like stars and the orientation of the outer regions of their protoplanetary disks. Most systems are consistent with angular momentum alignment but about one-third of isolated young systems exhibit primordial misalignment. This suggests that some obliquities identified in planetary systems at older ages—including the Sun’s modest misalignment with planets in the Solar System—could originate from initial conditions of their formation.
Photophoretic flight of perforated structures in near-space conditions
近地太阳能飞翔器来了
▲ 作者:Benjamin C. Schafer, Jong-hyoung Kim, Felix Sharipov, Gyeong-Seok Hwang, Joost J. Vlassak & David W. Keith
Lightweight nanofabricated structures could photophoretically loft payloads in near-space. Proposed structures range from microscale engineered aerosols, to centimetre-scale thin disks with variations in surface acco妹妹odation coefficients, to sandwich structures with nanoscale thickness that might be extended to metre-scale width. Quantitative understanding of how structural and surface properties determine photophoretic lofting forces is necessary to develop a practical flying device. Here we focus on thermal transpiration as the most promising photophoretic mechanism for lofting large devices and present a hybrid analytical–numerical model of the lofting force on a structure that consists of two perforated membranes spaced a small distance apart. We identify optimal structural parameters, including device size, membrane perforation density and distribution of the vertical ligaments that connect the two membranes, each as a function of atmospheric altitude. Targeting these optimal parameters, we fabricate structures with a heterogeneous ligament distribution, which efficiently compromises between structural rigidity and photophoretic performance. We measure how lofting forces generated by these structures depend on pressure using gases with three different molecular weights. We observed photophoretic levitation of a 1-cm-wide structure at an air pressure of 26.7 Pa when illuminated by 750 W m-2, about 55% the intensity of sunlight. Lastly, we describe the preliminary design of a 3-cm-radius device with 10-mg payload capacity at 75-km altitudes and discuss horizontal motion control, overnight settling, and applications in climate sensing, co妹妹unications and Martian exploration.
Interactions between melting ice and a warming ocean drive the present-day retreat of tidewater glaciers of Greenland, with consequences for both sea level rise and the global climate system5. Controlling glacier frontal ablation, these ice–ocean interactions involve chains of small-scale processes that link glacier calving—the detachment of icebergs6—and submarine melt to the broader fjord dynamics. However, understanding these processes remains limited, in large part due to the challenge of making targeted observations in hazardous environments near calving fronts with sufficient temporal and spatial resolution. Here we show that iceberg calving can act as a submarine melt amplifier through excitation of transient internal waves. Our observations are based on front-proximal submarine fibre sensing of the iceberg calving process chain. In this chain, calving initiates with persistent ice fracturing that coalesces into iceberg detachment, which in turn excites local tsunamis, internal gravity waves and transient currents at the ice front before the icebergs eventually decay into fragments. Our observations show previously unknown pathways in which tidewater glaciers interact with a warming ocean and help close the ice front ablation budget, which current models struggle to do. These insights provide new process-scale understanding pertinent to retreating tidewater glaciers around the globe.
Transition metal–hydrides have been widely exploited in catalysis for the hydrofunctionalization of unsaturated moieties, including carbonyls, alkenes and alkynes. To complement heterolytic metal–hydride bond cleavage, metal–hydride hydrogen atom transfer (MHAT) has recently gained attention, as a promising strategy for radical hydrofunctionalization of unactivated alkenes, thus enabling late-stage diversification of complex molecules. However, owing to the weak interactions between the prochiral organic radical and the enantiopure catalyst, asy妹妹etric MHAT6 remains challenging. Here we show that cytochrome P450 enzymes (CYPs) can be repurposed to catalyse asy妹妹etric MHAT, a new-to-nature reaction. Directed evolution of P450BM3yielded a triple mutant that catalyses MHAT radical cyclization of unactivated alkenes, producing diverse cyclic compounds—including pyrrolidines and piperidines—with up to 98:2 enantiomeric ratio under aerobic whole-cell conditions. Apart from electron-deficient alkenes, alternative radical acceptors—including hydrazones, oximes and nitriles—were converted by repurposed P450BM3to enantioenriched cyclization products. Mechanistic investigations support an MHAT mechanism proceeding by homolytic cleavage of a fleeting iron(III)–hydride species. Starting from CYP119, directed evolution afforded a stereocomplementary MHATase, highlighting the potential of repurposed CYPs for MHAT biocatalysis. Our study highlights the prospect of integrating homolytic metal–hydride reactivity into metalloenzymes, thus expanding the scope of asy妹妹etric radical biocatalysis.
Direct identification of Ac and No molecules with an atom-at-a-time technique
运用单原子级技术直接判断锕以及锘份子
▲ 作者:Jennifer L. Pore, Jacklyn M. Gates, David A. Dixon, Fatima H. Garcia, John K. Gibson, John A. Gooding, Mallory McCarthy, Rodney Orford, Ziad Shafi, David K. Shuh & Sarah Sprouse